专业IT科技资讯平台,关注科技、手机、电脑、智能硬件、电脑知识!
当前位置:主页 > 科技 > 科技数据 >

李伟:监管科技应用路径研究

导读:

  李伟 中国人民银行科技司司长

  金融是国家重要的核心竞争力,金融安全是国家安全的重要

  李伟 中国人民银行科技司司长

  金融是国家重要的核心竞争力,金融安全是国家安全的重要组成部分。党中央、国务院高度重视防范化解金融风险,党的十九大、中央经济工作会议、全国金融工作会议均对新时代金融监管工作提出了新的、更高要求。同时近年来信息技术蓬勃发展,在此背景下监管科技(RegTech)应运而生,旨在利用现代科技成果优化金融监管模式,提升金融监管效率,降低机构合规成本。

  监管科技应用的必要性

  1

  应对金融风险新形势的需要

  由于金融科技背景下服务方式更加虚拟、业务边界逐渐模糊、经营环境不断开放,金融风险形势更加复杂。

  在此背景下,金融管理部门通过监管科技手段构建现代金融监管框架,研发基于人工智能、大数据、应用程序编程接口(API)等的金融监管平台和工具,采取系统嵌入、应用对接等方式建立数字化监管协议,有效增强金融监管信息的实时性、准确性、可追溯性和不可抵赖性,为及时有效识别和化解金融风险、整治金融乱象提供支撑。

  2

  解决金融监管瓶颈的需要

  随着我国金融业快速发展,金融管理部门在规范、管理和监督金融机构、金融市场等过程中面临挑战。在时效性方面,传统监管模式大多采用统计报表、现场检查等方式,依赖金融机构报送监管数据和合规报告,这种监管模式存在明显的时滞性。在穿透性方面,部分金融创新产品过度包装,业务本质被其表象所掩盖,准确识别跨界嵌套创新产品的底层资产和最终责任人存在一定难度。在统一性方面,金融机构合规人员在业务经营范围、数据报送口径、信息披露内容与准则、金融消费者权益保护等方面存在理解偏差,造成监管标准难以做到一致。监管科技借助技术手段对金融机构进行主动监管,通过对监管政策、合规性要求等的数字化表达,采用实时采集风险信息、抓取业务特征数据等方式,推动监管模式由事后监管向事中监管转变,有效解决信息不对称问题、消除信息壁垒,有利于缓解监管时滞性、提升监管穿透性、增强监管统一性。

  3

  降低机构合规成本的需要

  自2008年全球金融危机爆发以来,各国纷纷进行以宏观审慎政策为核心的金融监管体制改革,对金融机构合规管理、创新管理提出了更高要求。

  一方面,监管要求趋于严格,监管新政策推出的速度明显加快,金融机构需要投入更多的人力、物力、财力等资源去理解和执行监管新规,从而增加了合规管理成本。

  另一方面,金融创新日新月异,金融机构对监管要求了解不深入、不及时,可能导致创新滞后而贻误商机、丢失市场,也可能因忽视监管、拔苗助长形成风险而面临规范整治,增加了创新管理的成本。为此,金融机构迫切希望借助数字化、自动化手段增强合规能力,减少合规工作的资源支出,在加快金融创新的同时及时跟进监管要求,提高自身的合规效率和市场竞争力。

  4

  顺应大数据时代变革的需要

  随着大数据时代的脚步渐行渐近,金融业作为典型的数据密集型行业,每天都在生成和处理海量数据(行情603138,诊股)资源,对以数据为基础的金融监管产生了深刻影响。一方面,数据已经成为金融服务的重要生产资源,金融机构需要在“了解你的客户(KYC)”基础上进一步“了解你的数据(KYD)”,将尽职调查的对象由每一家机构、每一位客户扩大到每一个字节、每一个比特,甚至可以实现对每笔交易的精细化、精准化风险管理。另一方面,数量巨大、来源分散、格式多样的金融数据超出了传统监管手段的处理能力。监管科技有助于风险管理理念的转变和风险态势感知能力的提升,运用大数据技术及时、有效地挖掘出隐藏在金融海量数据中的经营规律与风险变化趋势,实现金融风险早识别、早预警、早发现、早处置。

  监管科技应用框架

  为提升监管科技应用效能,应当建立以金融管理部门为中心、以金融机构为节点、以数据为驱动、具有星型拓扑结构的技术监管框架。事前将监管政策与合规性要求“翻译”成数字化监管协议,并搭建监管平台提供相关服务;事中向金融机构嵌入监管“探针”自动化采集监管数据,进而实现风险态势的动态感知与智能分析;事后利用合规分析结果进行风险处置干预、合规情况可视化展示、风险信息共享、监管模型优化等。监管科技的应用框架如图所示。

李伟:监管科技应用路径研究

  1

  监管规则数字化“翻译”

  以文本形式呈现的监管规则在一定程度上存在理解成本较大、语义含糊等问题。因此,首先要利用信息技术手段将文本规则翻译成数字化协议,提升金融监管的一致性与权威性。

  充分运用自然语言处理(NLP)等技术转译监管规则,精准提取量化指标,建立规则中所涉主体间的关联关系模型,实现监管规定数字化存储与展现。

  利用计算机程序设计语言将监管规则编译为“程序代码”,从关键操作流程、量化指标、禁止条款等方面进行编程开发,封装为具有可扩展性的监管API等监管工具,实现机器可读、可执行、可对接。

  建立健全数字化监管规则库,充分整合归集不同领域、不同业态的数字化监管规则,利用深度学习、多级融合算法等手段及时挖掘发现监管漏洞、分歧和新需求,增强金融监管自我完善、自我更新、自我提高的能力。

  2

  监管应用平台化部署

  监管平台是承载监管科技应用的关键信息基础设施。监管平台的建设既要有效整合不同架构的业务系统、处理多源异构的监管数据,也要具备服务敏捷部署、资源动态分配的支撑能力。

  3

  监管数据自动化采集

  金融监管就是数据监管,金融数据的采集汇聚是数据监管的基础,因此要建立完善监管数据采集体系,为金融监管提供有效支撑。在数据提取环节,优化监管数据报送手段,利用API、系统嵌入等方式,实现金融管理部门与金融机构之间的实时数据交互,减少人工干预,降低合规成本。在数据传输环节,利用密码技术、数据安全存储单元等支撑监管数据传输,通过属性、对象和访问类型标记元数据,增强监管数据采集过程的安全性和可靠性。在数据清洗环节,针对海量异构金融数据,特别是由于数据来源广、关联系统多等原因而产生的低质量数据,综合运用数据挖掘、模式规则算法、分析统计等手段进行多层清洗,使获得的数据具有高精度、低重复、高可用优势,为风险态势分析等提供更为科学合理的数据支持。

  4

  风险态势智能化分析

  风险分析是金融监管的核心环节。要基于人工智能技术实现金融风险的智能化监测,提升金融风险态势感知能力。

  5

  合规情况综合化利用

  针对风险态势智能分析得到的不同结果,合理运用、因事制宜、精准施策,提升金融监管的有效性。

  借助深度学习等技术实现风险隐患的自动化处置,针对不同的风险类型触发最优的风险处置和缓释措施,如对欺诈交易采取自动中断,对系统性金融风险实行早期预警。

  利用可视化等技术将合规情况进行全方位、全要素展现,同时借助云平台等促进风险态势互通,实现风险信息在监管科技参与主体间的全局共享,最大限度隔离风险。

  借助数据分析和模式识别等技术,将风险态势分析结果、合规情况报告、历史监管数据等进行自动抽取、反复迭代,促进算法的重构与优化,建立更准确、完整、合规的分析评估模型和内部管理规则。

  监管科技的实施策略

  1

  建立监管科技标准体系